1 1 1 0 0 0
0 1 0 0 0 0
1 1 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
We define an hourglass in to be a subset of values with indices falling in this pattern in 's graphical representation:
a b c
d
e f g
There are hourglasses in , and an hourglass sum is the sum of an hourglass' values.
Task
Calculate the hourglass sum for every hourglass in , then print the maximum hourglass sum.
Calculate the hourglass sum for every hourglass in , then print the maximum hourglass sum.
Input Format
There are lines of input, where each line contains space-separated integers describing 2D Array ; every value in will be in the inclusive range of to .
Constraints
Output Format
Print the largest (maximum) hourglass sum found in .
Sample Input
1 1 1 0 0 0
0 1 0 0 0 0
1 1 1 0 0 0
0 0 2 4 4 0
0 0 0 2 0 0
0 0 1 2 4 0
Sample Output
19
Explanation
contains the following hourglasses:
1 1 1 1 1 0 1 0 0 0 0 0
1 0 0 0
1 1 1 1 1 0 1 0 0 0 0 0
0 1 0 1 0 0 0 0 0 0 0 0
1 1 0 0
0 0 2 0 2 4 2 4 4 4 4 0
1 1 1 1 1 0 1 0 0 0 0 0
0 2 4 4
0 0 0 0 0 2 0 2 0 2 0 0
0 0 2 0 2 4 2 4 4 4 4 0
0 0 2 0
0 0 1 0 1 2 1 2 4 2 4 0
The hourglass with the maximum sum () is:
2 4 4 2 1 2 4
#include <math.h> #include <stdio.h> #include <string.h> #include <stdlib.h> #include <assert.h> #include <limits.h> #include <stdbool.h> int sum(int r,int c,int arr[6][6]) { int s=0; s=arr[r][c]+arr[r][c+1]+arr[r][c+2]; s+=arr[r+1][c+1]; s+=arr[r+2][c+0]+arr[r+2][c+1]+arr[r+2][c+2]; return s; } int main(){ int arr[6][6] ; /*={{1,1,1,0,0,0}, {0,1,0,0,0,0,}, {1,1,1,0,0,0}, {0,0,2,4,4,0}, {0,0,0,2,0,0}, {0,0,1,2,4,0}}; */ int smax,i,j,val; for(int arr_i = 0; arr_i < 6; arr_i++){ for(int arr_j = 0; arr_j < 6; arr_j++){ scanf("%d",&arr[arr_i][arr_j]); } } smax=sum(0,0,arr); for(i=0;i<=3;i++) for(j=0;j<=3;j++) { val=sum(i,j,arr); if(smax<val) smax=val; } printf("\nMax Hour Glass=%d",smax); return 0; }
No comments:
Post a Comment